

Study of the radiation-induced effects on COTS components

Twelfth International Conference of Radiation, Natural Sciences, Medicine, Engineering, Technology and Ecology

Herceg Novi, Montenegro - June 17-21, 2024

B. D'Orsi – Sapienza University of Rome/INRS-EMT/ENEA Nuclear Dept.
R. Carcione, I. Di Sarcina, J. Scifo, A. Verna and A. Cemmi - ENEA Nuclear Dept.
C. Altomare, G. Cucinella, D. Lazzaro – IMT srl
P. Antici, E. Catrix – INRS-EMT

Introduction

Electronic devices

Irradiation

- Gamma rays
- <u>Protons</u> (innovative and conventional sources – stress testing method validation)
- Neutrons
- Electrons

- Study of radiation effects
- Radiation resistance testing of specific electronic devices
- Investigate different irradiation methods for optimization of stress testing

Electronic components characterization before and after irradiation

Tested components

Many parameters (currents, voltages and gain) were evaluated before and after the irradiation tests.

Irradiation facilities: Canada and Italy

Conventional radiation sources for stress testing

Innovative radiation source for stress testing

Proton irradiation Advanced Laser Light Source (ALLS) ion beamline at INRS-EMT (Varennes, Québec, Canada)

Gamma irradiation
Calliope facility at ENEA
Casaccia R.C.
(Rome, Italy)

ALLS facility at INRS-EMT (Varennes, Québec, Canada)

At the **Institut National de la Recherche Scientifique** in Québec (Canada), laser-accelerated protons with a broad energy spectrum are available at the **ALLS** (Advanced Laser Light Source) **laboratory**.

Titanium-Sapphire laser

The most powerful available in Canada

Laser beam peak power750 TWCentral wavelength800 nmPulse repetition rate2.5 Hz
(5 shots each 2 seconds)Energy per pulseUp to 13 JPulse duration17 fsBeam diameter170 mmPicosecond contrast1x10-12

Thomson Parabola with a MicroChannel Plate (allows high repetition-rate shots) as ion detector.

Boule rouge: multiple target holder (800 targets that can be shot automatically), proton source, optics, samples

ALLS facility at INRS-EMT: TNSA mechanism and proton spectrum

Ionization of target rear surface and ions acceleration

Energy (MeV)

Calliope gamma irradiation facility at the ENEA Casaccia R.C. (Rome, Italy)

Maximum available dose rate (May 2024): 6.2 kGy/h

Maximum allowed activity:
3.7x10¹⁵ Bq (100 kCi)

Activities (research & qualification):

Space, Nuclear, High Energy Physics, environment, radiobiology, Cultural Heritage, agrifood, medicine...

Pool-type irradiation facility equipped with a 60 Co gamma source in a large volume ($7 \times 6 \times 3.9 \text{ m}^3$) shielded cell.

Dosimetric and **characterization** laboratories are available.

- Irradiation tests at different dose rates, atmospheric and temperature conditions and under bias.
- Simulation of the gamma field by Fluka/MCNP code (irradiation cell and irradiated samples).
- Online tests and remote acquisition.
- ISO 9001 ISO 17025 (by 2024)

Frascati Neutron Generator at the ENEA Frascati R.C. (Frascati, Italy)

The Frascati Neutron Generator (FNG) is a medium intensity neutron source housed in a large shielded cell $(11.5 \times 12 \times 9 \text{ m}^3)$.

It consists of a linear electrostatic accelerator of D+ ions up to 270 keV and 1 mA.

Research activities:

Benchmark experiments, detector calibration, detector development, Space, Nuclear, Biology, High Energy Physics, environment...

- Simulation of the neutronic field by MCNP code
- Test with high flux, on bias and online data acquisition from the Control Room

Target	Neutron energy	Maximum neutron flux
Tritiated	14 MeV (T(d,n) ⁴ He)	5 ·10 ⁹ n/cm ² /s
Deuterated	2.45 MeV (D(d,n) ³ He)	5 ·10 ⁷ n/cm ² /s

Possible radiation effects on electronics

The active material of electronic devices is often made of **silicon**.

Leroy C, Rancoita PG. Particle interaction and displacement damage in silicon devices operated in radiation environments. Reports Prog Phys. 2007;70(4):493–625

Typical radiation effects on BJTs

 e^{-} -h creation and separation $\rightarrow e^{-}$ drift outside the oxide

→ h migration and trapping in the Si-SiO₂ interface AFTER IRRADIATION

IE

Surface defects (TID)

WANTER IRRADIATION

IB

WANTER IRRADIATION

IB

WANTER IRRADIATION

Interstitials-vacancies creation

E_C

E_R

E_R

E_C

E

Spreading of BE depletion region (increased recombination, increased base current)

Reduction of minority carriers lifetime (increased recombination)

These effects

translate in BJTs

current gain

degradation

Radiation damage evaluation

To evaluate the radiation effect, the β parameter, corresponding to the transistor current gain, the leakage currents and saturation voltages were measured.

$$I_{c} = \beta I_{B}$$

I_C: collector current

I_B: base current

I_E: emitter current

V_{CE}: collector to emitter voltage

V_{CE}: emitter to base voltage

 $ightarrow eta_1$ measured for $I_c = 0.1 \ mA$

 $\rightarrow \beta_2$ measured for $I_c = 1 \, mA$

$$\Delta \left(rac{1}{eta}
ight) = rac{1}{eta^{irr}} - rac{1}{eta^0}$$

Other measured parameters:

Leakage currents

I_{CBO} (collector base cutoff current)

I_{EBO} (emitter base cutoff current)

I_{CEO} (collector emitter cutoff current)

Current that flows when the device is in off state

Saturation voltages

V_{CE(SAT)} collector to emitter saturation voltage

 $V_{BE(SAT)}$ base to emitter saturation voltage

Voltage beyond which the collector current remains constant as the base current increases.

COTS BJTs: gamma irradiation steps and measurements - 1

- **Eighteen samples** (NPN bipolar transistors 2N2222A) two for each irradiation condition
- Irradiation at different absorbed doses
- Dose rate = ~ 1 kGy(Si)/h

Irradiation test	Total absorbed dose (kGy)
1	~1
2	~2.2
3	~26
4	~70
5	~120
6	~240
7	~320
8	~420
9	~520

All samples were biased during irradiation (+30 V).

Irradiation tests:

Irradiation at room temperature and parametric tests after irradiation

Annealing followed by parametric tests:

- -24 hours at room temperature
- -168 hours at 100 °C

⁶⁰Co gamma radiation

~ 0.004

 $\frac{1}{\beta_2^0} \sim 0.004$

gamma irradiation steps and measurements - 2

HEAVILY damaged

after irradiation at absorbed dose values

 $> \sim 10 \text{ kGy(Si)}$

gamma irradiation steps and measurements - 3

Annealing tests

ACS Discovery DM340C climatic chamber

After irradiation, two annealing tests were performed in order to evaluate the **recovery** of the parameters.

Slight recovery of the samples irradiated up to 2.2 kGy(Si) after the annealing tests

No recovery of the heavily damaged samples after the annealing tests

proton irradiation tests (ALLS) and measurements - 1

Six decapped samples (NPN bipolar transistors 2N2222A)

Irradiation at different absorbed dose

Dose ~ 3.5 Gy per each shot

MATLAB

All samples were unbiased during irradiation.

Irradiation test	Number of shots	Absorbed dose (Gy)
1	1	3.5
2	5	17.5
3	50	175
4	100	350
5	250	875
6	400	1400

The lid was removed

Irradiation tests:

Irradiation at room temperature and parametric test after irradiation

Annealing followed by parametric tests:

- -24 hours at room temperature
- -168 hours at 100 °C

proton irradiation tests (ALLS) and measurements - 2

HEAVILY damaged

after irradiation with a number of shots

No recovery after the annealing tests

14 MeV Neutrons

neutron irradiation tests and measurements - 1

- **Ten samples** (NPN bipolar transistors 2N2222A) two for each irradiation condition
- Irradiation up to different neutron fluences (14 MeV neutrons)

$SR-NIEL\ Calculator\ (ASTM\ E722-19)$

Irradiation test	Neutron fluence	NIEL absorbed dose (Gy)
1	2 · 10 ⁹ n/cm ²	1.2 · 10 ⁻³
2	$2 \cdot 10^{11} \text{n/cm}^2$	1.2 · 10 ⁻¹
3	2 · 10 ¹² n/cm ²	1.2
4	1 · 10 ¹³ n/cm ²	0.6 · 10 ¹
5	2 · 10 ¹³ n/cm ²	1.2 · 10 ¹

Irradiation setup

All samples were unbiased during irradiation.

Irradiation tests:

Irradiation at room temperature and parametric test after irradiation

Annealing followed by parametric tests:

- -24 hours at room temperature
- -168 hours at 100 °C

14 MeV Neutrons

 $\frac{1}{\beta_2^0} \sim 0.004$

neutron irradiation tests and measurements - 2

HEAVILY damaged

after irradiation with neutron fluence $> \sim 6 \cdot 10^{12} \, \text{n/cm}^2$ ($D_{NIEL} \sim 3.5 \, \text{Gy}$)

Ongoing

 $\frac{1}{\beta_1^0} \sim 0.004$

 $\rightarrow \beta_2$ measured for $I_c = 1 mA$

annealing tests

NIEL dose deposition study – 1

Non Ionizing Energy Loss (NIEL) processes are mainly related to bulk damage (Frenkel pairs creation, DD)

 $Total Dose = Dose_{TID} + Dose_{NIEL}$

<u>TID</u>: Surface damage

TID depends on radiation type and irradiation conditions

<u>NIEL</u>: Bulk damage

NIEL dose allows to predict the damage (proportional to the number of created defects) that cause the malfunctioning independently of the radiation type

NIEL dose deposition study – 2

⁶⁰Co photons directly induce only TID damage but can create Compton electrons responsible of **DD**.

The **electron flux** for gamma irradiation at \sim 1 kGy(Si)/h

NIEL dose deposition study – 3

NIEL dose evaluation

Dose_{NIEL} corresponding to fixed irradiation conditions

Dose_{NIEL} for a given 14 MeV neutron fluence

Dose at which the component functioning is compromised

	Dose	Sample irradiated with gamma radiation	Sample irradiated with protons
	Total	∼10 kGy	~ 15 Gy
/	TID	∼10 kGy	~14.99 Gy
	NIEL	~ 0.01 Gy	~0.01 Gy

Sample irradiated with neutrons

Ongoing

Total Dose = Dose_{TID} + Dose_{NIEL}

Conclusion

- > Acceptable current gain decrease of biased **COTS transistors** after:
- Gamma irradiation up to ~10 kGy(Si);
- Laser-accelerated protons irradiation up to \sim 4 laser shots (\sim 15 Gy);
- Neutron irradiation up to a neutron fluence of 6 · 10¹² n/cm².
- > Heavily damaged samples did not recover after the annealing tests.

- > NIEL dose study allows to evaluate the bulk damage independently of the radiation source.
- > Same NIEL absorbed dose (gamma and protons) causes same damage;
- > Same total absorbed dose (gamma and protons) causes different damages.
- Ongoing analysis of data obtained after neutron irradiation;
- Ongoing irradiation tests with conventional proton sources and electrons.

TWELFTH INTERNATIONAL CONFERENCE OF RADIATION,
NATURAL SCIENCES, MEDICINE, ENGINEERING, TECHNOLOGY AND ECOLOGY

JUNE 17-21, 2024

HUNGUEST HOTEL SUN RESORT, HERCEG NOVI, MONTENEGRO

beatrice.dorsi@enea.it beatrice.dorsi@inrs.ca

